Establishment and Validation of Computational Model for MT1-MMP Dependent ECM Degradation and Intervention Strategies

نویسندگان

  • Daisuke Hoshino
  • Naohiko Koshikawa
  • Takashi Suzuki
  • Vito Quaranta
  • Alissa M. Weaver
  • Motoharu Seiki
  • Kazuhisa Ichikawa
چکیده

MT1-MMP is a potent invasion-promoting membrane protease employed by aggressive cancer cells. MT1-MMP localizes preferentially at membrane protrusions called invadopodia where it plays a central role in degradation of the surrounding extracellular matrix (ECM). Previous reports suggested a role for a continuous supply of MT1-MMP in ECM degradation. However, the turnover rate of MT1-MMP and the extent to which the turnover contributes to the ECM degradation at invadopodia have not been clarified. To approach this problem, we first performed FRAP (Fluorescence Recovery after Photobleaching) experiments with fluorescence-tagged MT1-MMP focusing on a single invadopodium and found very rapid recovery in FRAP signals, approximated by double-exponential plots with time constants of 26 s and 259 s. The recovery depended primarily on vesicle transport, but negligibly on lateral diffusion. Next we constructed a computational model employing the observed kinetics of the FRAP experiments. The simulations successfully reproduced our FRAP experiments. Next we inhibited the vesicle transport both experimentally, and in simulation. Addition of drugs inhibiting vesicle transport blocked ECM degradation experimentally, and the simulation showed no appreciable ECM degradation under conditions inhibiting vesicle transport. In addition, the degree of the reduction in ECM degradation depended on the degree of the reduction in the MT1-MMP turnover. Thus, our experiments and simulations have established the role of the rapid turnover of MT1-MMP in ECM degradation at invadopodia. Furthermore, our simulations suggested synergetic contributions of proteolytic activity and the MT1-MMP turnover to ECM degradation because there was a nonlinear and marked reduction in ECM degradation if both factors were reduced simultaneously. Thus our computational model provides a new in silico tool to design and evaluate intervention strategies in cancer cell invasion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical Role of Transient Activity of MT1-MMP for ECM Degradation in Invadopodia

Focal degradation of extracellular matrix (ECM) is the first step in the invasion of cancer cells. MT1-MMP is a potent membrane proteinase employed by aggressive cancer cells. In our previous study, we reported that MT1-MMP was preferentially located at membrane protrusions called invadopodia, where MT1-MMP underwent quick turnover. Our computer simulation and experiments showed that this quick...

متن کامل

CDCP1 regulates the function of MT1-MMP and invadopodia-mediated invasion of cancer cells.

Complement C1r/C1s, Uegf, Bmp1 (CUB) domain-containing protein 1 (CDCP1) is a transmembrane protein that regulates anchorage-independent growth and cancer cell migration and invasion. Expression of CDCP1 is detected in a number of cancer cell lines and tissues and is closely correlated with poor prognosis. Invadopodia are actin-based protrusions on the surface of invasive cancer cells that prom...

متن کامل

Oncogenes and Tumor Suppressors CDCP1 Regulates the Function of MT1-MMP and Invadopodia-Mediated Invasion of Cancer Cells

Complement C1r/C1s, Uegf, Bmp1 (CUB) domain-containing protein 1 (CDCP1) is a transmembrane protein that regulates anchorage-independent growth and cancer cell migration and invasion. Expression of CDCP1 is detected in a number of cancer cell lines and tissues and is closely correlated with poor prognosis. Invadopodia are actin-based protrusions on the surface of invasive cancer cells that prom...

متن کامل

Roles of membrane-type matrix metalloproteinase-1 in tumor invasion and metastasis.

Degradation of extracellular matrix (ECM) is one of the first steps in tumor invasion and metastasis. Matrix metalloproteinases (MMP) have been strongly implicated in this step. Membrane-type MMP-1 (MT1-MMP) was first identified as an activator of proMMP-2 expressed on the surface of tumor cells and later, not only ECM macromolecules but also various biologically important molecules, were shown...

متن کامل

Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia.

When migrating away from a primary tumour, cancer cells interact with and remodel the extracellular matrix (ECM). Matrix metalloproteinases (MMPs), and in particular the transmembrane MT1-MMP (also known as MMP-14), are key enzymes in tumour-cell invasion. Results from recent in vitro studies highlight that MT1-MMP is implicated both in the breaching of basement membranes by tumour cells and in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012